资源类型

期刊论文 40

年份

2023 3

2022 3

2021 4

2020 2

2019 3

2018 1

2017 2

2016 1

2014 1

2013 2

2012 2

2011 2

2010 2

2009 3

2008 2

2007 4

2001 1

2000 1

展开 ︾

关键词

人工湿地 3

湿地 2

GA-BP网络 1

上海市 1

串联 1

优化 1

保护 1

分阶段施工桥梁 1

利用 1

回流 1

多点进水 1

安装计算 1

并行作业 1

废水 1

建闸方法 1

微生物群落组成 1

无应力曲率 1

无应力长度 1

曝气 1

展开 ︾

检索范围:

排序: 展示方式:

Effect of wetland plant fermentation broth on nitrogen removal and bioenergy generation in constructedwetland-microbial fuel cells

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1592-x

摘要:

● Fermentation broth facilitates N removal and energy yields in tertiary CW-MFC.

关键词: Constructed wetland     Microbial fuel cell     Nitrogen removal     Bioenergy generation     Carbon source    

Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructedwetland system

Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh

《环境科学与工程前沿(英文)》 2021年 第15卷 第2期 doi: 10.1007/s11783-020-1312-3

摘要: Abstract • PFOS was removed by soil adsorption and plant uptake in the VFCW. • Uptake of PFOS by E. crassipes was more than that of C. alternifolius. • PFOS in wastewater can inhibit the removal of nutrients. • Dosing with PFOS changed the soil microbial community in the VFCW. A vertical-flow constructed wetland (VFCW) was used to treat simulated domestic sewage containing perfluorooctane sulfonate (PFOS). The removal rate of PFOS in the domestic sewage was 93%–98%, through soil adsorption and plant uptake, suggesting that VFCWs can remove PFOS efficiently from wastewater. The removal of PFOS in the VFCW was dependent on soil adsorption and plant uptake; moreover, the percentage of soil adsorption was 61%–89%, and was higher than that of the plants uptake (5%–31%). The absorption capacity of Eichhornia crassipes (E. crassipes) (1186.71 mg/kg) was higher than that of Cyperus alternifolius (C. alternifolius) (162.77 mg/kg) under 10 mg/L PFOS, and the transfer factor of PFOS in E. crassipes and C. alternifolius was 0.04 and 0.58, respectively, indicating that PFOS is not easily translocated to leaves from roots of wetland plants; moreover, uptake of PFOS by E. crassipes was more than that of C. alternifolius because the biomass of E. crassipes was more than that of C. alternifolius and the roots of E. crassipes can take up PFOS directly from wastewater while C. alternifolius needs to do so via its roots in the soil. The concentration of 10 mg/L PFOS had an obvious inhibitory effect on the removal rate of total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the VFCW, which decreased by 15%, 10%, 10% and 12%, respectively. Dosing with PFOS in the wastewater reduced the bacterial richness but increased the diversity in soil because PFOS stimulated the growth of PFOS-tolerant strains.

关键词: Vertical-flow constructed wetland     Perfluorooctane sulfonate     Wetland plants     Soil microbial community     Effect     Speciality: Wetlands     Transformation     Organic pollutants     Phytoremediation     Exposure assessment     Sewage    

Removal of arsenic by pilot-scale vertical flow constructed wetland

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-021-1435-1

摘要:

• VFCWs are effective for the treatment of arsenic-containing wastewater.

关键词: Constructed wetland     Arsenic     Removal efficiency     Mass balance    

Characteristics of pollutants behavior in a stormwater constructed wetland during dry days

Jianghua YU, Kisoo PARK, Youngchul KIM

《环境科学与工程前沿(英文)》 2012年 第6卷 第5期   页码 649-657 doi: 10.1007/s11783-012-0426-7

摘要: A stormwater wetland treating non-point source pollution (NPS) from a 64 ha agricultural watershed was monitored over a period of five months. The results indicated that pH and dissolved oxygen (DO) were increased in the wetland due to the algal growth. The highest total suspended solids (TSS) concentration was observed in the aeration pond due to the resuspension of solids, decreased in the wetland. The respective decreases in total nitrogen (TN) and total kjeldahl nitrogen (TKN) were 15.9% and 28.7% on passing through the wetland. The nitrate and ammonia were increased by 45.4% and decreased by 79.9%, respectively. These variations provided strong evidence for the existence of nitrification. The total phosphorus (TP) and phosphate had respective reductions of 52.3% and 58.2% over the wetland. The total chemical oxygen demand (TCOD) and soluble chemical oxygen demand (SCOD) were also decreased. Generally, the TN, TP and phosphate removal efficiencies were positive. These positive removal efficiencies were mainly due to microbial activities, uptake by plants, and chemical precipitation at high pH. Negative removal efficiencies can be caused by continuous rainfall activities, with short antecedent dry days (ADDs) and unstable hydraulic conditions, some other biogeochemical transformations and algal growth also being important parameters.

关键词: constructed stormwater wetland     dry days     nitrification and denitrification     pollutants characteristic    

REDUCTION OF NON-POINT SOURCE POLLUTION IN THE YONG’AN RIVER BY CONSTRUCTED WETLAND BASED ON 9 YEARS

《农业科学与工程前沿(英文)》 2023年 第10卷 第4期   页码 627-638 doi: 10.15302/J-FASE-2023516

摘要:

The agricultural and livestock activities surrounding the rivers flowing into the lakes have caused non-point source pollution, leading to excessive amounts of nutrient salts in downstream rivers. Introducing river water into constructed wetlands along river course has proven to be an effective solution for decreasing nitrogen (N) and phosphorus (P) loads. This paper reports 9 years of monitoring the Yong’an River and its surrounding constructed wetlands in the upper reaches of Erhai Lake, located in Yunnan Province, China. This study analyzed the main types of pollutants in the river, and evaluated the removal efficiency of pollutants by the constructed wetlands. The findings indicate that total nitrogen (TN) and nitrate nitrogen (NO3-N) are the primary pollutants in the Yong’an River, which exhibit variation throughout the year corresponding to the alternating wet and dry seasons. Although constructed wetlands are effective in removing NO3-N and P, their efficacy in removing ammonium nitrogen (NH4+-N) and organic pollutants is limited. This limitation can be attributed to the lack of timely disposal of aquatic plant residues. This research contributes to the understanding of the potential issues that may arise during the extended use of constructed wetlands and provides solutions to address them.

关键词: inflowing rivers     surface-flow constructed wetland     nutrients     long-term monitoring    

Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm

Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1236-y

摘要: • Fe(III) accepted the most electrons from organics, followed by NO3‒, SO42‒, and O2. • The electrons accepted by SO42‒ could be stored in the solid AVS, FeS2-S, and S0. • The autotrophic denitrification driven by solid S had two-phase characteristics. • A conceptual model involving electron acceptance, storage, and donation was built. • S cycle transferred electrons between organics and NO3‒ with an efficiency of 15%. A constructed wetland microcosm was employed to investigate the sulfur cycle-mediated electron transfer between carbon and nitrate. Sulfate accepted electrons from organics at the average rate of 0.84 mol/(m3·d) through sulfate reduction, which accounted for 20.0% of the electron input rate. The remainder of the electrons derived from organics were accepted by dissolved oxygen (2.6%), nitrate (26.8%), and iron(III) (39.9%). The sulfide produced from sulfate reduction was transformed into acid-volatile sulfide, pyrite, and elemental sulfur, which were deposited in the substratum, storing electrons in the microcosm at the average rate of 0.52 mol/(m3·d). In the presence of nitrate, the acid-volatile and elemental sulfur were oxidized to sulfate, donating electrons at the average rate of 0.14 mol/(m3·d) and driving autotrophic denitrification at the average rate of 0.30 g N/(m3·d). The overall electron transfer efficiency of the sulfur cycle for autotrophic denitrification was 15.3%. A mass balance assessment indicated that approximately 50% of the input sulfur was discharged from the microcosm, and the remainder was removed through deposition (49%) and plant uptake (1%). Dominant sulfate-reducing (i.e., Desulfovirga, Desulforhopalus, Desulfatitalea, and Desulfatirhabdium) and sulfur-oxidizing bacteria (i.e., Thiohalobacter, Thiobacillus, Sulfuritalea, and Sulfurisoma), which jointly fulfilled a sustainable sulfur cycle, were identified. These results improved understanding of electron transfers among carbon, nitrogen, and sulfur cycles in constructed wetlands, and are of engineering significance.

关键词: Constructed wetland     Sulfur cycle     Electron transfer     Denitrification    

Enhanced nitrogen removal reliability and efficiency in integrated constructed wetland microcosms using

Yue WEN, Chao XU, Gang LIU, Yi CHEN, Qi ZHOU

《环境科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 140-147 doi: 10.1007/s11783-011-0286-6

摘要: The purpose of this study is to reduce the seasonal fluctuation and enhance the efficiency of nitrogen removal in vertical flow-horizontal subsurface flow (VF-HSF) constructed wetlands. Two sets of VF-HSF constructed wetlands were built, VF1-HSF1 and VF2-HSF2, and a zeolite section was placed in VF2. The results showed that VF2-HSF2 compared to VF1-HSF1 was not only a more reliable nitrogen removal method, but also enhanced the nitrogen removal efficiency by 50%. The average apparent rate of nitrogen removal in VF2-HSF2 reached to 2.52 gN·m ·d , which doubled the rate in VF1-HSF1. Plant uptake and organic nitrogen sediment accounted for 12% and 6% of the total nitrogen removal in VF1-HSF1, respectively, and 10% and 4% in VF2-HSF2, respectively. Biologic nitrogen removal was the dominant mechanism, which accounted for 79% and 87% of the total nitrogen removal in VF1-HSF1 and VF2-HSF2, respectively. Ammonia adsorbed by zeolite during the cold seasons was desorbed, and then nitrified in warm seasons, which resulted in a bioregeneration efficiency of 91%. Zeolite in VF was capable of transferring ammonia from cold seasons to warm seasons as well as enhancing nitrification, which was accompanied by high potential denitrification in HSF that reinforced the efficiency and relieved seasonal fluctuation of nitrogen removal in VF-HSF.

关键词: constructed wetland     zeolite     bioregeneration     nitrogen removal    

Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1432-4

摘要:

• Aquatic plants are more likely to absorb TiO2 NPs that are beneficial to them.

关键词: Constructed wetlands     Aquatic plants     Nanoparticles     Physiological activity     Biomass    

Urban constructed wetlands: Assessing ecosystem services and disservices for safe, resilient, and sustainable

《工程管理前沿(英文)》   页码 582-596 doi: 10.1007/s42524-023-0268-y

摘要: Climate change and rapid urbanization are pressing environmental and social concerns, with approximately 56% of the global population living in urban areas. This number is expected to rise to 68% by 2050, leading to the expansion of cities and encroachment upon natural areas, including wetlands, causing their degradation and fragmentation. To mitigate these challenges, green and blue infrastructures (GBIs), such as constructed wetlands, have been proposed to emulate and replace the functions of natural wetlands. This study evaluates the potential of eight constructed wetlands near Beijing, China, focusing on their ecosystem services (ESs), cost savings related to human health, growing/maintenance expenses, and disservices using an emergy-based assessment procedure. The results indicate that all constructed wetlands effectively purify wastewater, reducing nutrient concentrations (e.g., total nitrogen, total phosphorus, and total suspended solids). Among the studied wetlands, the integrated vertical subsurface flow constructed wetland (CW-4) demonstrates the highest wastewater purification capability (1.63E+14 sej/m2/yr) compared to other types (6.78E+13 and 2.08E+13 sej/m2/yr). Additionally, constructed wetlands contribute to flood mitigation, groundwater recharge, wildlife habitat protection, and carbon sequestration, resembling the functions of natural wetlands. However, the implementation of constructed wetlands in cities is not without challenges, including greenhouse gas emissions, green waste management, mosquito issues, and disturbances in the surrounding urban areas, negatively impacting residents. The ternary phase diagram reveals that all constructed wetlands provide more benefits than costs and impacts. CW-4 shows the highest benefit‒cost ratio, reaching 50%, while free water surface constructed wetland (CW-3) exhibits the lowest benefits (approximately 38%), higher impacts (approximately 25%), and lower costs (approximately 37%) compared to other wetlands. The study advocates the use of an emergy approach as a reliable method to assess the quality of constructed wetlands, providing valuable insights for policymakers in selecting suitable constructed wetlands for effective urban ecological management.

关键词: constructed wetland     emergy     ecosystem services     disservices     ternary diagram    

tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructedwetland system

Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu

《环境科学与工程前沿(英文)》 2019年 第13卷 第1期 doi: 10.1007/s11783-019-1097-4

摘要:

SBBR-CW system was proposed to effectively treat wastewater containing TCBPA.

CW unit contributed more than SBBR to the removal of TCBPA.

TCBPA changed the composition and structure of bacterial community in the system.

GAOs massively grew in SBBR, but did not deteriorate TP removal efficiency.

关键词: SBBR     Constructed wetland     Tetrachlorobisphenol A     Microbial community structure    

Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating

Zhenfeng Han, Ying Miao, Jing Dong, Zhiqiang Shen, Yuexi Zhou, Shan Liu, Chunping Yang

《环境科学与工程前沿(英文)》 2019年 第13卷 第4期 doi: 10.1007/s11783-019-1133-4

摘要:

Anaerobically digested swine wastewater was treated by a novel constructed wetland.

Tidal operation was better for total nitrogen removal than intermittent flow.

Mechanism of nitrogen removal by biozeolite-based constructed wetland was discussed.

Simultaneous nitrification and denitrification were determined in zeolite layer.

关键词: Constructed wetland     Decentralized swine wastewater     Biozeolite     Simultaneous nitrification and denitrification     Nitrogen removal pathway    

Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed

Jianguo LIU,Wen ZHANG,Peng QU,Mingxin WANG

《环境科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 262-269 doi: 10.1007/s11783-014-0746-x

摘要: Variations in cadmium (Cd) tolerances and accumulations among fifteen wetland plant species in moderately (0.5 mg·L ) and heavily (1.0 mg·L ) Cd-polluted wastewaters were investigated in constructed wetlands. Cd removal efficiencies from the wastewaters were more than 90%, and 23.5% and 16.8% of the Cd in the water accumulated in wetland plants for 0.5 and 1.0 mg·L Cd treatments, respectively. The variations among the plant species were 29.4-fold to 48.7-fold in plant biomasses, 5.4-fold to 21.9-fold in Cd concentrations, and 13.8-fold to 29.6-fold in Cd accumulations. The plant species were also largely diversified in terms of Cd tolerance. Some species were tolerant of heavy Cd stress, and some others were sensitive to moderate Cd level. Four wetland plant species were selected for the treatment of Cd-polluted wastewater for their high Cd accumulating abilities and relative Cd tolerances. Plant Cd quantity accumulations are correlated positively and significantly ( <0.05) with plant biomasses and correlated positively but insignificantly ( >0.05) with plant Cd concentrations. The results indicate that the Cd accumulation abilities of wetland plant species are determined mainly by their biomasses and Cd tolerances in growth, which should be the first criteria in selecting wetland plant species for the treating Cd-polluted wastewaters. Cd concentration in the plants may be the second consideration.

关键词: cadmium (Cd)     wastewater treatment     wetland plant     selection     index    

Simultaneous enhanced ammonia and nitrate removal from secondary effluent in constructed wetlands using

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1807-4

摘要:

● MnO2/PCL composite material (MPCM) enhances ammonia and nitrate removal in CWs.

关键词: Constructed wetland     Nitrogen removal     Manganese redox     Polycaprolactone     Nitrous oxide    

Impact of photosynthesis and transpiration on nitrogen removal in constructed wetlands

LUO Weiguo, WANG Shihe, HUANG Juan, YAN Lu, HUANG Jun

《环境科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 316-319 doi: 10.1007/s11783-007-0053-x

摘要: To determine the impact of photosynthesis and transpiration on nitrogen removal in wetlands, an artificial wetland planted with reeds was constructed to treat highly concentrated domestic wastewater. Under different meteorological and hydraulic conditions, the daily changes of photosynthesis and transpiration of reeds, as well as nitrogen removal efficiency were measured. It was found that net photosynthesis rate per unit leaf area was maintained on a high level (average 19.0 yDol CO/(m · s) ) from 10:00 to 14:00 in July 2004 and reached a peak of 21.1 μmol CO/(m · s) when Photon Flux Density was high during the day. Meanwhile, TN and NH-N removal efficiency rose to 79.6% and 89.6%, respectively–the maximum values observed in the test. Correlation coefficient analysis demonstrated a positive correlation among photon flux density, net photosynthetic rate, transpiration rate, and TN and NH-N removal efficiency. In contrast, there was a negative correlation between stomatal conductance and TN and NH-N removal efficiency. Results suggest that the photosynthesis and transpiration of wetland plants have a great impact on nitrogen removal efficiency of wetlands, which can be enhanced by an increase in the photosynthesis and transpiration rate. In addition, the efficiency of water usage by reeds and nitrogen removal efficiency could be affected by the water level in wetlands; a higher level boosts nitrogen removal efficiency.

关键词: transpiration     Correlation coefficient     nitrogen removal     artificial wetland     impact    

Relationships of nitrous oxide fluxes with water quality parameters in free water surface constructed

Juan WU, Jian ZHANG, Wenlin JIA, Huijun XIE, Bo ZHANG

《环境科学与工程前沿(英文)》 2009年 第3卷 第2期   页码 241-247 doi: 10.1007/s11783-009-0023-6

摘要: The effects of chemical oxygen demand (COD) concentration in the influent on nitrous oxide (N O) emissions, together with the relationships between N O and water quality parameters in free water surface constructed wetlands, were investigated with laboratory-scale systems. N O emission and purification performance of wastewater were very strongly dependent on COD concentration in the influent, and the total N O emission in the system with middle COD influent concentration was the least. The relationships between N O and the chemical and physical water quality variables were studied by using principal component scores in multiple linear regression analysis to predict N O flux. The multiple linear regression model against principal components indicated that different water parameters affected N O flux with different COD concentrations in the influent, but nitrate nitrogen affected N O flux in all systems.

关键词: free water surface constructed wetland     nitrous oxide emission     water quality parameter     principal component analysis     multiple linear regression    

标题 作者 时间 类型 操作

Effect of wetland plant fermentation broth on nitrogen removal and bioenergy generation in constructedwetland-microbial fuel cells

期刊论文

Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructedwetland system

Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh

期刊论文

Removal of arsenic by pilot-scale vertical flow constructed wetland

期刊论文

Characteristics of pollutants behavior in a stormwater constructed wetland during dry days

Jianghua YU, Kisoo PARK, Youngchul KIM

期刊论文

REDUCTION OF NON-POINT SOURCE POLLUTION IN THE YONG’AN RIVER BY CONSTRUCTED WETLAND BASED ON 9 YEARS

期刊论文

Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm

Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou

期刊论文

Enhanced nitrogen removal reliability and efficiency in integrated constructed wetland microcosms using

Yue WEN, Chao XU, Gang LIU, Yi CHEN, Qi ZHOU

期刊论文

Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system

期刊论文

Urban constructed wetlands: Assessing ecosystem services and disservices for safe, resilient, and sustainable

期刊论文

tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructedwetland system

Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu

期刊论文

Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating

Zhenfeng Han, Ying Miao, Jing Dong, Zhiqiang Shen, Yuexi Zhou, Shan Liu, Chunping Yang

期刊论文

Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed

Jianguo LIU,Wen ZHANG,Peng QU,Mingxin WANG

期刊论文

Simultaneous enhanced ammonia and nitrate removal from secondary effluent in constructed wetlands using

期刊论文

Impact of photosynthesis and transpiration on nitrogen removal in constructed wetlands

LUO Weiguo, WANG Shihe, HUANG Juan, YAN Lu, HUANG Jun

期刊论文

Relationships of nitrous oxide fluxes with water quality parameters in free water surface constructed

Juan WU, Jian ZHANG, Wenlin JIA, Huijun XIE, Bo ZHANG

期刊论文